CSCI 210: Computer Architecture
Lecture 36: Associative Caches

Stephen Checkoway
Oberlin College

Jan. 10, 2022
Slides from Cynthia Taylor

Announcements

Problem Set 12 due Friday
Cache Lab (final project) due on the day of the final exam

Course evals now available!
— Extra credit for everyone if more than 90% of the class fills them out

Office Hours Tuesday 13:30 — 14:30

— On Zoom

Store-hit policy: write-through
* Update cache block AND memory

* Makes writes take longer

— e.g., if base CPl =1, 10% of instructions are stores, write to memory takes 100
cycles

* Effective CPI=1+0.1x100=11

e Solution: write buffer
— Holds data waiting to be written to memory

— CPU continues immediately
* Only stalls on write if write buffer is already full

Store-hit policy: write-back
-mm

0000420 FE FF 3C ..

* Only update the block in cache

— Keep track of whether each block is “dirty”
(i.e., it has a different value than in
memory)

1 0012345 32 AQ0 5C ..

0 0O00OF3CB 00 00 00 ..

* When a dirty block is replaced

© ©O B O O +»r O B

— Write it back to memory
— Can use a write buffer to allow replacing
block to be read first

e Faster than write-through, but more
complex

Store-miss policy: write-allocate

* Read a block from memory (just like a load miss)

* Perform the write according to the store-hit policy (i.e., write in
cache or write in both cache and memory)

* Good for when data is likely to be read shortly after being
written (temporal locality)

Store-miss policy: write-around

* Only write the data to memory

* Good for initialization where lots of memory is written at once
but won’t be read again soon

|l-cache vs D-cache

PCSrc
M
Add > u
ALU X
4 l Add oq it
Read i
_ | Read - ALUSrc 4 ALU operation
—+|PC address register 1 dea? | MemWrite
| Read o MemtoRe
Instruction ¢ register 2 ALU zero ?
Write Te9ISterS Read AL Ll Address Fiead
Instruction register data 2 M ata
memory ‘)l:
| data !
ata
_| write Data
RegWrite data memory
MemRead ‘
16 Sign- 32
extend

e Separate caches for instruction memory and data memory
* |-cache: instruction cache
* D-cache: data cache

Measuring Cache Performance

* Components of CPU time
— Program execution cycles
* Includes cache hit time

— Memory stall cycles

* Mainly from cache misses

* With simPIifying assumptions:
Memory stall cycles

~ Memory accesses

x Miss rate x Miss penalty
Program

Instructions Misses .
— X xMiss penalty

Program Instruction

Miss Cycles Per Instruction

Given .mm

e |-cache miss rate = 2% .02 * 100 .04 * 100
e D-cache miss rate = 4% B .02 04
: C .02*.36*100 .04 * .36 * 100
* Miss penalty = 100 cycles
D .02 *100 .04 * 36 * 100

e Base CPI (ideal cache) =
e Load & stores are 36% of instructions

Cache Performance Example

* Given
— |-cache miss rate = 2%
— D-cache miss rate = 4%
— Miss penalty = 100 cycles
— Base CPI (ideal cache) = 2
— Load & stores are 36% of instructions

* Miss cycles per instruction

— |-cache: 0.02 x 100 = 2

— D-cache: 0.36 x 0.04 x 100 = 1.44
e ActualCPl=2+2+1.44=5.44

— |deal CPU is 2
— Speedup =5.44/2 =2.72

Average Access Time

* Hit time is also important for performance

* Average memory access time (AMAT)
— AMAT = Hit time + Miss rate X Miss penalty

 Example
— hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%
— AMAT =

Performance Summary

When CPU performance increased

— Miss penalty becomes more significant
Decreasing base CPI

— Greater proportion of time spent on memory stalls

Increasing clock rate

— Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating system
performance

We need the cache to be fast!

Memory lookup time
Hit rate
Size

Frequency of collisions

Block Size Considerations

* Larger blocks should reduce miss rate
— Due to spatial locality
* Butin a fixed-sized cache

— Larger blocks = fewer of them

* More competition = increased miss rate
* Larger miss penalty

— Can override benefit of reduced miss rate

Cache associativity

Direct mapped

* Direct mapped

Block# 01234567

— Each block goes into 1 spot
— Only search one entry Data
— Associativity = 1

* What if we allow blocks to go e 1
into more than one spot?

Search I

Cache associativity

° Fu”y associative Fully associative

— Allow a given block to go in any
cache entry

— Requires all entries to be searched Data
at once

— Comparator per entry (expensive)

1

Ta
9 2

s TITTTTT

Cache associativity

Set associative

n-way set associative
Set# 0 1 2 3

e Each set contains n entries

* Block number determines which set Data
— (Block number) % (#Sets in cache)

* Search all entries in a given set at once T
ag
2

* n comparators (less expensive)

Search T T

Spectrum of associativity for 8-entry cache

One-way set associative
(direct mapped)

Block Tag Data

(1) Two-way set associative
2 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Memory addresses, block addresses, offsets

o 01 01 0111001 0O011 01011001 01 0@0UDO0T11

Block size of 32 bytes (not bits!) V|Tag |Data |V|Tag |Data
0

16-block, 2-way set associative cache |

Each address 3F2084 ..

— A (32 — 5)-bit block address (in purple an
— A 5-bit offset into the block (in green)

Block address can be divided into
— A (32 — 3 - 5)-bit tag (purple)
— A 3-bit cache index (blue)

15C9AC ..

© ©O BB O O O
© O O o o —» o o

Set Associative Cache Organization

Address

3130---12111098---3210

422 8
Tag
Index

Index V Tag Data V Tag Data V Tag V Tag Data
0
1
2

p [< [p p [[p
253
254
255

J22 32
(= (= (= (=

Hit

é—toJ multiplexo)
!

Given a 256-entry, 8-way set associative cache with a block size
of 64 bytes, how many bits are in the tag, index, and offset?

“Thagnis lindecbits | ofsetbits
A 32-5-6=21 5 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-6—-3=23 6 3

Given a 256-entry, fully associative cache with a block size of 64
bytes, how many bits are in the tag, index, and offset?

“Thagnis lindecbits | ofsetbits
A 32-5-6=21 1 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-0-6=26 0 6

Associativity Example

 Compare 4-block caches

— Direct mapped, 2-way set associative, fully associative

— Block access sequence: 0, 8,0, 6, 8

* Direct mapped

Block Cache Hit/miss Cache content after access
address index
1 2
0 0
8 0
0 0
6 2
8 0

Associativity Example: 0, 8, 0, 6, 8

* 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set0 Set 1
0 0
8 0
0 0
6 0
8 0

= Fully associative

Block Hit/miss Cache content after access
address

0

| O] O ©o

Replacement Policy

e Least-recently used (LRU)

— Choose the one unused for the longest time
* Simple for 2-way, manageable for 4-way, too hard beyond that

e Random

— Gives approximately the same performance as LRU for high
associativity

How Much Associativity

* Increased associativity decreases miss rate
— But with diminishing returns

* Simulation of a system with 64 kB
D-cache, 64-byte blocks
— 1-way: 10.3%
— 2-way: 8.6%
— 4-way: 8.3%
— 8-way: 8.1%

Reading

e Next lecture: More Caches!
— Section 6.4

* Problem Set 12 due Friday

 Cache lab

